IC for Control of Lithium-ion Betteries Charging (one cell) Monolithic IC MM1438

Outline

This IC is used to control charging of lithium-ion batteries consisting of a single cell. It is a modification of the previous MM1332 charging-control IC, with improved charging voltage accuracy and a smaller package. A low voltage circuit is built in (operates at SW2 = "L") that can prohibit low voltage battery (2.15V typ.) charging. When SW2 = "H", the low voltage circuit is turned off and even a low voltage battery can be charged.

Series Table	Temperature conditions A: Ta=-25~75°C, B: Ta=-20~70°C, C: Ta=0~50°C,
	D: Ta=0~40°C

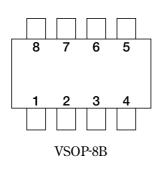
		Pac	kage		Output voltage (V)	Output voltage temperature conditions	detection	Remarks *
	SOP-8C,	8E VSOP-8A, 8B	TSOP-16A	TSOP-24A				
MM143	8	AW			4.125±0.030	С		1cell
101101140	0	BW			4.225±0.030	С		1cell

250µA typ.

Features

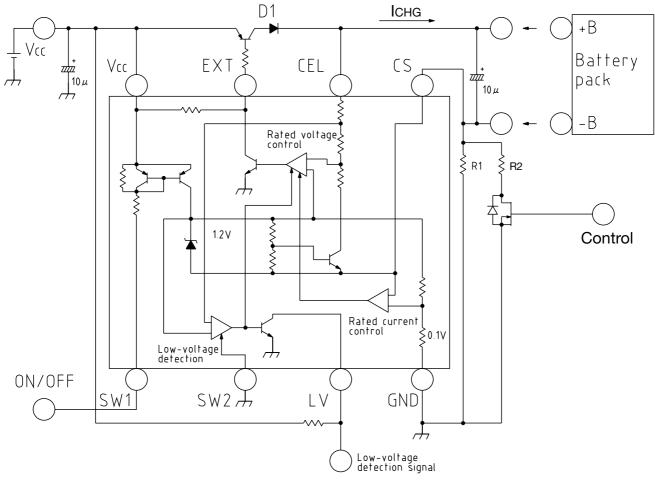
1. Charging voltage accuracy (Ta=25°C)	±25mV/cell
2. Charging voltage accuracy (Ta=0 to 50°C)	±30mV/cell

- 2. Charging voltage accuracy (Ta=0 to 50°C)
- 3. Consumption current (charging on)
- 4. Consumption current (charging off)
- 5. Low-voltage detection
- 2µA typ. 2.15V typ. 6. Leakage current between CEL and CS 1µA max.


Package

VSOP-8B

Applications


IC for control of lithium-ion batteries charging.

Pin Assignment

1	GND
2	LV
3	SW2
4	SW1
5	Vcc
6	EXT
7	CEL
8	CS

Block Diagram

*1 For example, if charging current (ICHQ) is set at 0.5A, $R_1 = 0.2 \Omega$ can be set. (VcL/ICHQ=0.1V/0.5A=R₁) *2 Charging current can be controlled by varying resistance value with R_1 and R_2 .

Pin Description

Pin No.	Pin name	I/O	Pin Description		
1	GND	Input	Ground pin		
2	LV	0,4,4	Low voltage detection circuit output pin		
2	LV	Output	ON with NPN-Tr open collector output at low voltage		
3	SW2	Input	Low voltage detection circuit ON/OFF control input pin		
3	5112	Input	SW2 = Vcc: OFF, SW2 = GND: ON		
4	CW/1	71 Input	ON/OFF control input pin for the IC		
4	SW1		SW1 = Vcc: OFF, SW1 = GND: ON		
5	Vcc	Input	Power supply input pin		
6	EXT	Output	Charging control output pin Controls external PNP-Tr to control charging.		
7	7 CEL Input		Battery voltage input pin		
· '			Detects battery voltage and controls rated voltage to the prescribed voltage value.		
			Current detection pin		
8	B CS Inp		CS	Input	Detects current by drop in external resistor voltage and controls rated current.
			Current value can be set at 0.1V/R1 typ.		

Absolute Maximum Ratings (Ta=25°C)

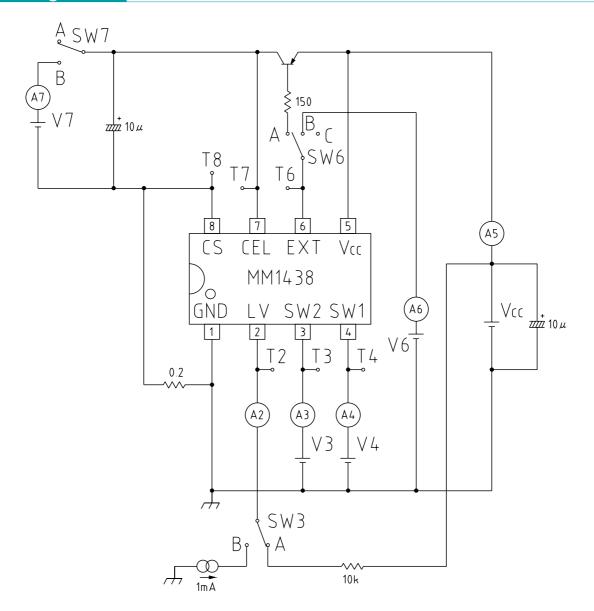
Item	Symbol	Ratings	Unit
Storage temperature	Tstg	-40~+125	°C
Operating temperature	Topr	-20~+70	°C
Power supply voltage	Vcc max.	-0.3~+18	V
CFL pin input voltage	VCEL max.	-0.3~+13	V
SW input voltage	Vsw	-0.3~Vcc+0.3	V
Allowable loss	Pd	300	mW

Recommended Operating Conditions

Item	Symbol	Ratings	Unit
Operating temperature	Topr	-20~+70	°C
Charging control operating voltage	Vopr	2.5~+17	V

Note: Operating voltage minimum value is during rated current control.

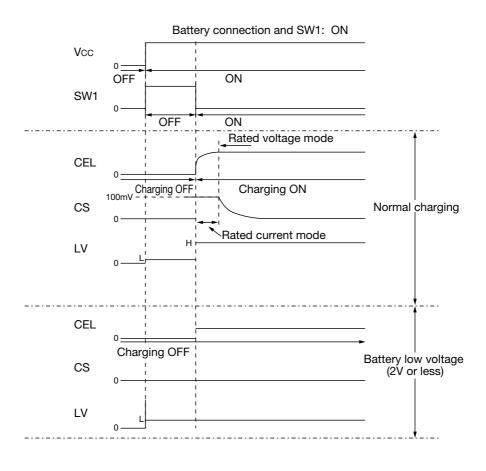
Electrical Characteristics (Except where noted otherwise, Ta=25°C, Vcc=5V, SW3 : A, SW6 : A, SW7 : A) Models listed MM1438A

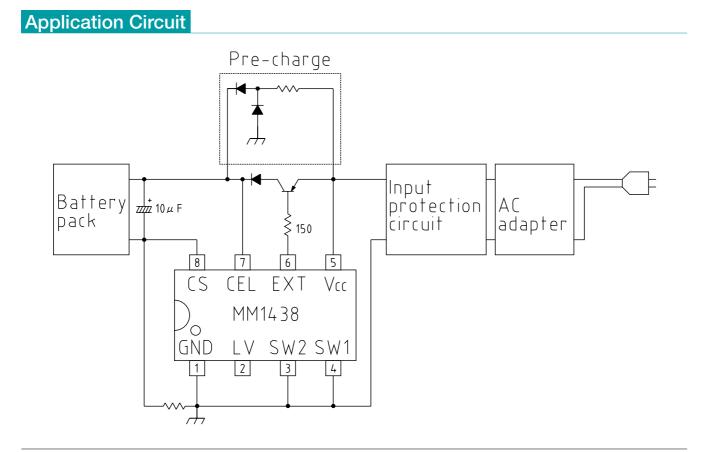

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Consumption current 1	Icc1	VSW1=VSW2=0V (Charge : ON)		250	400	μA
Consumption current 2	Icc2	VSW1=VSW2=Vcc (Charge : OFF)		2	10	μA
Output voltage 1	Voi	Ta=25°C	4.100	4.125	4.150	V
Output voltage 2	Vo ₂	Ta=0~50°C	4.095	4.125	4.155	V
Current limit	Vcl		90	100	110	mV
Inflow current between	т		2.0	50	7.0	
CEL-CS during operation	ICEL1		3.0	5.0	7.0	μA
Leak current between CEL-CS	ICEL2	Vcc=0V or OPEN		0.01	1	μA
SW1 input current	Isw1			20	30	μA
SW1 input voltage L	VL1	Charge : ON	-0.3		2.0	V
SW1 input voltage H	V _{H1}	Charge : OFF	Vcc-1.0		Vcc+0.3	V
Low voltage detection voltage	Lv		2.0	2.15	2.3	V
SW2 input current	Isw2			20	30	μA
SW2 input voltage L	VL2	Low voltage detection circuit: ON	-0.3		2.0	V
SW2 input voltage H	V _{H2}	Low voltage detection circuit: OFF	Vcc-1.0		Vcc+0.3	V
Low voltage detection	т				0.5	
output leak current	Ilv				0.5	μA
Low voltage detection	VIN	Lanux 1m A		0.9	0.4	v
output saturation voltage	VLV	Isink=1mA		0.2	0.4	v
EXT pin inflow current	Iext		10	20		mA
EXT pin output voltage	Vext	For no load	0.3		Vcc-0.3	V

Note 1: Please insert a capacitor of several µF between power supply and ground when using.

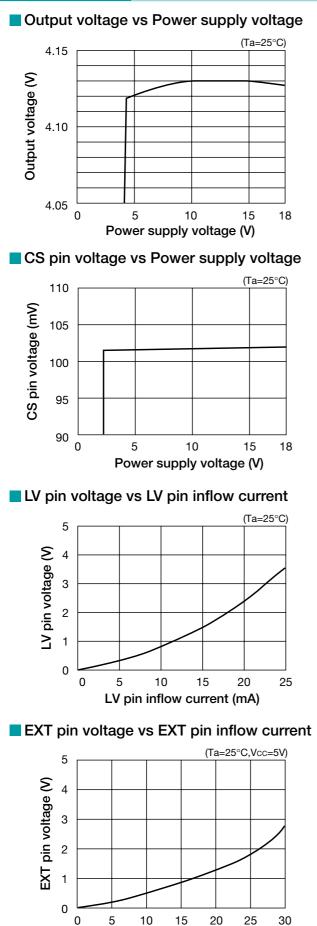
Note 2: Be sure that CS pin potential does not fall below -0.5V.

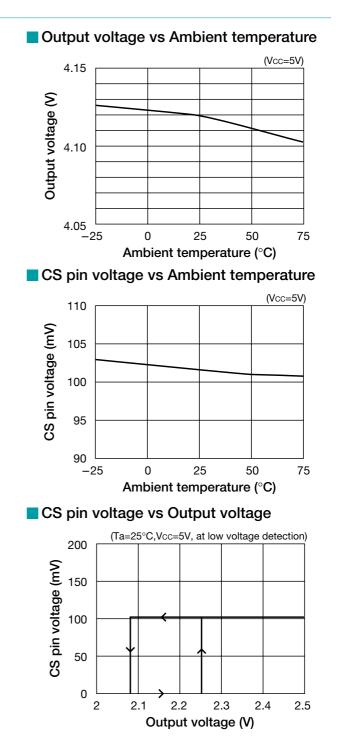
Note 3: If the IC is damaged and control is no longer possible, its safety can not be guaranteed. Please protect with something other than this IC.


Measuring Circuit


Measurement Procedures (Except where noted otherwise, Ta=25°C, Vcc=5V, SW3 : A, SW6 : A, SW7 : A)

Item	Measurement Procedures		
Concumption ourrent 1	V3 = Vcc, V4 = 0V. Next, measure A5 current value Icc1 when V3 is changed		
Consumption current 1	from $Vcc \rightarrow 0V$.		
Consumption current 2	V3 = Vd = Vcc. Measure A6 current value Icc2 at this time.		
Output voltage	V3 = Vcc, V4 = 0V. Measure T7 voltage Vo at this time.		
Current limit	V3 = Vcc, V4 = 0V. Set V7 voltage 1V lower than T7 (output voltage) potential		
Current minit	and set SW7 to B. Measure T8 voltage VcL at this time.		
Inflow current between	V3 = Vcc, V4 = 0V, SW6: C. V7 = 4.5V, SW7: B. Measure A7 current value		
CEL-CS during operation	ICEL1 at this time.		
Leak current between CEL-CS	V3 = V4 = Vcc = 0V, SW6: C. V7 = 4.5V, SW7: B. Measure A7 current value		
Leak current between CEL-CS	ICEL2 at this time.		
SW1 input current	Measure A4 current value Isw1 when V4 = 0V.		
SW1 input voltage	V3 = Vcc. Charge: ON (VL1) when V4 potential is varied and T7 voltage is the		
Swi input voltage	prescribed output voltage; Charge OFF (V _{H1}) when $0 \sim 0.05$ V.		
	V3 = V4 = 0V. Set V7 voltage 1V lower than T7 (output voltage) potential, and		
Low voltage detection voltage	SW7: B.		
Low voltage detection voltage	Next gradually lower V7 voltage; V7 voltage is Lv when A7 current value is		
	within ±10µA.		
SW2 input current	Measure A3 current value Isw2 when V3 = 0V.		
	V4 = 0V, V7 = 1V, SW7: B. Low voltage detection circuit: ON (V12) when V3		
SW2 input voltage	voltage is varied and A7 current value is within $\pm 10\mu\text{A}$; low voltage detection		
	circuit: OFF (VH2) otherwise.		
Low voltage detection	V3 = Vcc, V4 = 0V. Measure A2 current value ILV when V3 is changed from		
output leak current	Vcc 0V.		
Low voltage detection	V3 = V4 = 0V. SW3: B, SW7: B. Measure T2 voltage V _{LV} when V7 voltage is 0V.		
output saturation voltage	$v_0 = v_4 = 0v$. Swo: D, Swo: D. Measure 12 voltage viv when v7 voltage is 0v.		
EXT pin inflow current	V3 = V4 = 0V. SW6: B, SW7: B, V6 = 4V, V7 = 3V. Measure A6 current value Iext.		
EXT pin output voltage	V3 = V4 = 0V. SW6: C, SW7: B. T6 voltage when V7 = $3V$ and V7 = $5V$ is VEXT.		


Timing Chart


(SW2 : L)

Characteristics

EXT pin inflow current (mA)

